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1 Elementary Homotopy Theory

Definition 1 Two maps f, g : X → Y between spaces X, Y are said to be homotopic if
there exists a continuous map H : X × I → Y with H(x, 0) = f(x) and H(x, 1) = g(x) for
all x ∈ X. The map H is said to be a homotopy from f to g, and we write H : f ' g. �

We will often write (x, t) 7→ Ht(x) = H(x, t) for the action of a homotopy. This notation
motivates us to consider some other notions of homotopy. The reader who favours a more
hands-on approach may prefer to return to these paragraphs after studying the examples in
1.1.

Definition 2 For spaces X, Y we write Top(X, Y ) for the set of continuous maps X → Y ,
and write C(X, Y ) for the space of such maps given the compact-open topology. In the special
case that X = I, we write C(I, Y ) = Y I . �

We now have a correspondence between (not necessarily continuous) functions X × Y → Z,
X → C(Y, Z), and Y → C(X,Z). In general we have the following relation between these
maps.

Lemma 1.1 For spaces X, Y, Z the function

(−)# : Top(X × Y, Z)→ Top(X,C(Y, Z)), f 7→ [f# : x 7→ [y 7→ f(x, y)]] (1.1)

is an injection of sets. If the evaluation map evY,Z : C(Y, Z) × Y → Z, (g, y) 7→ g(y), is
continuous, then (−)# is a bijection of sets and

(−)[ : Top(X,C(Y, Z))→ Top(X × Y, Z), g 7→ [g[ : (x, y) 7→ g(x)(y)] (1.2)

is its set-theoretic inverse. In particular these functions are inverse bijections when Y is
locally compact1.

1We say a space X is locally compact at a point x ∈ X if each neighbourhood of x contains a compact
neighbourhood this point. We say that X is locally compact if it is locally compact at each of its points.
Warning: different definitions of local compactness appear in the literature.
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Now, I is locally compact, so there is a one-to-one correspondence between continuous maps
X× I → Y and continuous maps X → C(I, Y ) = Y I . Thus we could reformulate Definition
1 by saying that a homotopy G : f ' g is a map

G : X → Y I (1.3)

such that G(x)(0) = f(x) and G(x)(1) = g(x) for all x ∈ X. According to Lemma 1.1 this
notion is entirely equivalent to that introduced previously, and in the sequel we shall make
use of both points of view, since each has its own merits.

Finally there is a third way to think of a homotopy, which is as a path I → C(X, Y ).
The problem with this is that it only works well when our spaces are sufficiently nice.

Lemma 1.2 If f ' g : X → Y , then these maps are connected by a path I → C(X, Y ).
If X is locally compact, then the converse is true, and f ' g if and only these maps are
connected by a path I → C(X, Y ).

This would be our preferred way to work with homotopies were it not for the obvious flaw.
Unfortunately it is unavoidable that problematic spaces will be introduced at some point2.
We will return to this idea at a later time.

We now have three ways to think of a homotopy. However we choose to do so we will
display it diagrammatically as

H
��X

f

##

g

<<Y. (1.4)

We think of the spaces X, Y as 0-dimensional points, the maps f, g : X → Y as 1-dimensional
lines, and the homotopy H : f ' g as a 2-dimensional area. We’ll see later that it becomes
useful to extend these diagrams to higher dimensions, although we will not push this far.

Now, saying that f relates to g if and only if f ' g gives a relation on Top(X, Y ). If X
is locally compact, then this is the same as the relation of paths on C(X, Y ) (cf. Le.1.2),
but in general this will not be so. In any case, the following observation is fundamental.

Proposition 1.3 The relation of homotopy on maps X → Y is an equivalence relation and
a congruence with respect to composition.

The proof is immediate and left as an exercise. The reader will, however, find the majority of
it in contained within the following remarks, which we include to set notation and to explain
our use of the term congruence.

1. For any map f : X → Y there is the constant, or trivial, homotopy f ' f defined by
f ◦ prX : X × I → X → Y . It will sometimes be convenient to denote this homotopy
simply by f when no confusion will arise.

2For example R is locally compact, but its subspace Q is not, so local compactness is not hereditary. If Q
denotes the rationals with the discrete topology, then it is locally compact, but the image of the continuous
surjection Q → Q is not locally compact. In general local compactness is neither a hereditary or divisible
topological property.
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2. If H : f ' g : X → Y is given, then −H denotes the homotopy g ' f defined by

(−H)(x, t) = H(x, 1− t). (1.5)

3. If G : f ' g and H : g ' h are homotopies of maps X → Y , then G + H is the
homotopy f ' h defined by

(G+H)(x, t) =

{
G(x, 2t) 0 ≤ t ≤ 1

2

H(x, 2t− 1) 1
2
≤ t ≤ 1

x ∈ X, t ∈ I. (1.6)

We call G+H the vertical composition of the two homotopies. For obvious reasons
we will also call it addition of homotopies.

4. The statement that homotopy is a congruence means the following: if f ' g : X → Y ,
then hfk ' hgk whenever k : W → X and h : Y → Z are given. This gives rise
to a horizontal composition of homotopies. Namely if H : f ' g : X → Y and
K : h ' l : Y → Z are given, then we define the horizontal composition K?H : hf ' lg
by

(K ? H)(x, t) = K(H(x, t), t) = KtHt(x), x ∈ X, t ∈ I. (1.7)

The words vertical and horizontal come from the diagramatic description. The vertical
composition described above is suggested by the following pasting scheme

G��
G+H
��X

f

��

h

??g //

H��

Y = X

f

��

h

??Y (1.8)

while the horizontal composition is suggested by

H
��

K
��

K?H
��X

f

""

g

<<Y

h

""

l

==Z = X

hf

##

lg

<<Z. (1.9)

The two methods of composition are related by the following useful fact, whose proof is a
direct check left to the reader.

Proposition 1.4 (Interchange Law) Let X, Y, Z be spaces and let f0, f1, f2 : X → Y and
g1, g2, g2 : Y → Z be maps. Assume given homotopies G : f0 ' f1, H : f1 ' f2, K : g0 ' g1
and L : g1 ' g2. Then the following two homotopies g0f0 ' g2f2 coincide

(K + L) ? (G+H) = (K ? G) + (L ? H). (1.10)
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Notice the simple form the statement takes when expressed diagrammatically

G�� K�� K?G��
X

f0

��

f2

??f1 //

H��

Y

g1

��

g2

@@g0 //

L��

Z = X g1f1 //

g0f0

$$

g2f2

;;
L?H��

Z. (1.11)

Next, having discussed some necessary ideas, let us begin to contemplate some examples.
Although the examples we give here are simple, their purpose is to serve as a very intuitive
introduction to the theory.

Example 1.1

1. If V is a real vector space, then any two maps f, g : X → V are homotopic, say, by a
linear homotopy

F (x, t) = (1− t)f(x) + tg(x) = f(x) + t(g(x)− f(x)). (1.12)

2. More generally, if C ⊆ V is any convex subset, then any two maps f, g : X → C are
homotopic.

3. More generally still, any two maps f, g : X → C into a subset C ⊆ V which is ∗-convex
around a point v0 ∈ C (i.e. if v ∈ C is any point, then all points on the line segment
(1 − t)v + tv0, t ∈ I, lie in C) are homotopic. Here we need to use the transitivity of
the homotopy relation.

4. If A is an affine space, then any two maps f, g : X → A are homotopic, since a choice
of any point turns A into a vector space. In this case we do not have a canonical
homotopy.

5. Reversing the situation, let C ⊆ V be a convex subset. Then any pair of maps C → X
into a space X are homotopic. To see this it will be sufficient to show that any map
f : C → X is homotopic to a constant map, and for this we simply use the homotopy

Ft(v) = f ((1− t)v + tv0) , v ∈ C, t ∈ I. (1.13)

where v0 ∈ C is some chosen point. �

These examples are important enough to motivate a definition to capture their behaviour.
First some terminology. We call a map f : X → Y inessential if it is homotopic to the
constant map at some point y0 ∈ Y . A map is essential if it is not inessential. Most authors
also say that an inessential map is null-homotopic, and this is terminology which we will
also adopt.

Definition 3 A space X is said to be contractible if the identity idX is inessential. �
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Thus idX is homotopic to the constant map at some point x0 ∈ X. In particular X is
nonempty. We call a choice of null-homotopy F : idX ' x0 a contraction, or contracting
homotopy.

Example 1.2

1. A real vector space V is canonically contractible, since the two maps idV , v0 : V → V
are linearly homotopic.

2. An affine space A is contractible, but not canonically so.

3. A nonempty indiscrete space X is contractible:

(x, t) 7→

{
x t < 1

x0 t = 1.
(1.14)

4. The two-point space S = {0, 1} with topology {∅, {1},S} is called the Sierpinski
space. Although it is not indiscrete, it is still contractible. �

Here is a pair of simple but useful observations.

Proposition 1.5 A nonempty space Y is contractible if and only if for any space X, any
pair of maps f, g : X → Y are homotopic.

Proof If Y is contractible and Ft contracts it to a point y0, then Ftf and Ftg are homotopies
f ' y0 and g ' y0. In the other direction we can take X = Y , f = idY , g = y0.

Corollary 1.6 A contractible space is path connected and contracts to any of its points.

It may seem surprising, but any space X embeds into a contractible space. Define the
(unreduced) cone on X to be the quotient space

C̃X =
X × I
X × {1}

, (1.15)

and let jX : X ↪→ C̃X be the map x 7→ [x, 0], where we denote the equivalence classes in C̃X
with square brackets. By dragging the cone up to its point we get a canonical contraction

Fs[x, t] = [x, (1− s)t+ s], [x, t] ∈ C̃X, s ∈ I. (1.16)

Moreover, the map jX is a closed embedding, since for any 0 < ε < 1 the image of X × [0, ε)

in C̃X is a neighbourhood of jX(X) which carries the product topology.
A consequence of this construction which we will look to lever in future is the following.

Proposition 1.7 A map f : X → Y is null-homotopic if and only if it extends over C̃X.

Proof If H : f ' y0 is a null-homotopy, then H1(X) ⊆ {y0}, so H : X × I → Y factors over

the quotient to give a map f̃ : C̃X → Y satisfying f̃ jX = H0 = f . On the other hand, if f
factors through the contractible space C̃X, then, according to Propositions 1.3 and 1.5, it is
null-homotopic.
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Note that the cone construction is functorial. If f : X → Y is a map, then the canonical
null-homotopy of jY f induces a continuous map C̃f : C̃X → C̃Y making

X
f //

jX
��

Y

jY
��

C̃X
C̃f // C̃Y

(1.17)

commute strictly.
According to Proposition 1.5 and its corollary, through the eyes of a homotopy theorist,

a space which is contractible is no more interesting than a point. Really we should like a
more formal way to be able to compare spaces up to homotopy.

Definition 4 A map f : X → Y is said to be a homotopy equivalence if it is invertible
up to homotopy. That is, if there exists a map g : Y → X and a pair of homotopies gf ' idX
and fg ' idY . �

The definition is symmetric: if f : X
'−→ Y as in the definition is a homotopy equivalence,

then so is its homotopy inverse g : Y
'−→ X. We say that spaces X, Y are homotopy

equivalent, and write X ' Y , when there is a homotopy equivalence between them (point-
ing in either direction). The relation on spaces given by ‘homotopy equivalent to’ is an
equivalence relation, and its equivalence classes are called homotopy types.

Example 1.3

1. A homeomorphism X ∼= Y is a homotopy equivalence. In particular homotopy equiv-
alence is a coarser relation than homeomorpism. Thus if X 6' Y , then X 6∼= Y . This
observation is useful because it is generally a much easier task to show that two spaces
are not homotopy equivalent than it is to show that they are not homeomorphic. For
instance, the homotopy and cohomology groups which we will define can be used to ob-
struct the presence of a homotopy equivalence. In turn a lack of homotopy equivalence
is an obstruction to the presence of a homeomorphism.

2. If f : X
'−→ Y is a homotopy equivalence and f ' g, then g is a homotopy equivalence.

3. If X is contractible, then the inclusion x0 ↪→ X of any of its points is a homotopy
equivalence whose inverse is the collapse map X → x0.

4. There is a famous homotopy equivalence

doughnut ' coffee cup. (1.18)

Attempt to visualise this. Both objects have one hole, and the placement of this hole
and the ‘dent’ in the coffee cup are really inconsequential to the deformation we must
perform.

5. There are, up to homeomorphism, three possible topologies on a set with two points
S = {x, y}. How many distinct homotopy types are there amongst these spaces?
(Solution: The Sierpinski space and the indiscrete space are contractible. S0 is not
even path-connected.)
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6. Let T = {x, y, z} be a set with three distinct points. There are twenty nine possible
topologies on this set in total, and nine of them are inequivalent. Three of these
inequivalent topologies are disjoint unions of contractible spaces, and thus are not
connected. The six remaining topologies are connected. How many distinct homotopy
types are there amongst these spaces? (Solution: The answer is, of course, three. But
how many of spaces are there in each type?).

Example 1.4 Topological properties are generally not invariant under homotopy equiva-
lence. Things like the Hausdorff, regularity, and normality separation conditions can be
completely destroyed. For instance

Rn ' ∗ ' S (1.19)

and the Sierpinski space S is not even T1.
On the other hand properties like connectedness and path-connectedness are invariants

of homotopy type. The topologists’s sine curve is the connected but not path-connected
subspace of R2 given by S = {(x, sin(1/x) ∈ R2 | x ∈ (0, 1]} ∪ ({0} × [−1, 1]). No two of the
three spaces I, S0 and S can be homotopy equivalent because of the pairwise mismatch of
either connected components or path-components.

Finally observe that (1.19) shows that compactness is not a homotopy invariant property.
On the other hand compactness does have some useful interactions with homotopy.

Proposition 1.8 The infinite product
∏

N S
1 is not homotopy equivalent to a CW complex.

Proof The key point is that every compact subset of a CW complex is contained in a finite
subcomplex, while

∏
N S

1 is compact in the product topology. Thus if we assume that X is
a CW complex and

∏
N S

1 → X →
∏

N S
1 is a pair of maps whose composite is homotopic

to the identity, then it must be that the first map factors through some finite subcomplex

K ⊆ X. Restriction therefore gives us maps
∏

N S
1 f−→ K

g−→
∏

N S
1 which satisfy gf ' id.

If H∗ denotes singular homology, then using id∗ = (gf)∗ = g∗f∗ we get that the composite

H∗(
∏

N S
1)

f∗−→ H∗K
g∗−→ H∗(

∏
N S

1) (1.20)

is equal to the identity. This shows that H∗(
∏

N S
1) must vanish in sufficiently large degrees.

This is true for the reason that all the homology groups of the finite complex K do. On the
other hand, including in the first n factors of the product as in the following diagram we see
that

∏
N S

1 has nonvanishing homology groups in arbitrarily high dimensions∏n
i=1 S

1

KKK
KKK

KKK
K

KKK
KKK

KKK
K
� � in //

∏
N S

1

pr

��

Hn(
∏n

i=1 S
1)

RRRR
RRRR

RRRR
RR

RRRR
RRRR

RRRR
RR

// Hn(
∏

N S
1)

pr∗
��∏n

i=1 S
1 Hn(

∏n
i=1 S

1) ∼= Z.

(1.21)

Thus we have a contradiction, and the complex X cannot possibly exist.

A useful notion that is weaker than homotopy equivalence is the following.
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Definition 5 Assume given maps f : X → Y and g : Y → X such that gf ' idX . In this
case we say that g is a left homotopy inverse to f , and that f is a right homotopy
inverse to g. �

Thus f : X → Y is a homotopy equivalence when there is a map g : Y → X which is both
a left and right homotopy inverse to it. In fact homotopy inverses have many of the good
properties that strict categorical inverses do.

Proposition 1.9 If f : X → Y has both a left homotopy inverse g and a right homotopy
inverse h, then g ' h. In particular f is a homotopy equivalence.

Proof Exercise.

It is also common for authors to call a left (homotopy) inverse a retraction, and a right
(homotopy) inverse a section. Unfortunately it can sometimes be unclear in what sense
these terms are meant - whether in a strict or in a homotopy-theoretic sense. This is our
reason for introducing the previous terminology.

Example 1.5 A subspace A ⊆ X is said to be a weak deformation retract if its inclusion
is a homotopy equivalence. i.e. if there is a map r : X → A and homotopies F : ir ' idX
and G : ri ' idA. In the case that ri = idA strictly, then we say that A is a deformation
retract of X. If furthermore the homotopy F can be chosen to satisfy Ft|A = idA, ∀t ∈ I,
then we say that A is a strong deformation retract of X.

Here are some examples:

1. The inclusion Sn−1 ↪→ Rn \ 0 is a strong deformation retract. The retraction is given
by Rn \ 0 3 x 7→ x

|x| ∈ S
n−1, and the required homotopy is F (x, t) = (1− t)x+ t x

|x| .

2. The subspace Sn−1 × I ∪ (Dn × 0) deformation retracts off of Dn × I by the map

r(x, s) =

{
(x/|x|, 2− (2− s)/|x|) |x| ≥ 1− s

2

(2x/(2− s), 0) |x| ≤ 1− s
2
.

(1.22)

The deforming homotopy is given by following the straight line in Dn×I between (x, s)
and r(x, s). Under the standard homeomorphism Dn × I ∼= In × I this deformation
retraction becomes one of the subspace (∂In × I) ∪ (In × 0) ⊆ In+1. We’ll see when
we study cofibrations that this example is actually quite useful!

3. The subspace C ⊆ R2 which is the union

C = (I × {0}) ∪ ({0} × I) ∪
⋃
n∈N

{1/n} × I (1.23)

is called the comb space and is contractible. Actually this space has some strange
properties which will make it an interesting counterexample in future.

A contraction of C is obtained by gluing together the homotopies F,G below. The
first is

Ft(x, y) = (x, (1− t)y), (x, y) ∈ C, t ∈ I (1.24)
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which deforms C onto the subspace I × {0}. Then

Gt(x, 0) = ((1− t)x, 0), (x, 0) ∈ I × {0}, t ∈ I (1.25)

contracts what remains to the point (0, 0).

The inclusion {0} × I ⊆ C of the end interval into the comb space C is a homotopy
equivalence and a deformation retract. However we will see later that it is not a strong
deformation retract. Similarly, the inclusion C ⊆ I2 is a homotopy equivalence and a
weak deformation retract, but not a deformation retract. �

Proposition 1.10 Let i : A
⊆−→ X be a subspace inclusion. Then A is a deformation

retraction of X if and only if both of the following two conditions are satisfied;

1. Each continuous map A→ Z into a space Z is extendable over X.

2. If f, g : X → Z are maps into a space Z and there is a homotopy f |A ' g|A : A→ Z,
then there is a homotopy f ' g : X → Z.

Proof Exercise. What do we change if we replace deformation retract with weak/strong
deformation retact?

So far we have mainly focused on examples of contractible spaces. Here is a result
involving the circle S1 ⊆ C and the exponential map

exp : R→ S1, t 7→ exp(it) (1.26)

which will take us in the opposite direction. Anyone who has some experience with covering
spaces will know a much stronger result, but it is the neat proof of the following proposition
which is amusing. To my knowledge it is due to S. Eilenberg.

Proposition 1.11 Let X be a compact metric space and f : X → S1 a map. Then f is
null-homotopic if and only if there exists a map ϕ : X → R such that f = exp ◦ϕ.

Proof If f = exp ◦ϕ, then it is null-homotopic, since ϕ ' ∗. To see the converse consider the
following motivation. Assume there is a map ϕ0 : X → R such that |f(x)− exp(iϕ0(x))| < 2

for all x ∈ X. Note that this implies that f(x)
exp(iϕ0(x))

6= −1 for all x ∈ X. Thus if we define

ϕ(x) to be the length of the oriented arc in S1 which goes between 1 and f(x)
exp(iϕ0(x))

, and

which does not pass through −1, then x 7→ ϕ(x) is a well-defined, continuous map X → R
satisfying f(x)

exp(iϕ0(x))
= exp(iϕ(x)) for each x ∈ X. In particular

f(x) = exp(iϕ0) · exp(iϕ(x)) = exp(i(ϕ0 + ϕ)(x)), ∀x ∈ X. (1.27)

Thus to show that f factors through the exponential map, it will be sufficient to find a ϕ0

as above.
So, to complete the proof let a null-homotopy F : ∗ ' f be given. Since X is compact,

F is uniformly continuous and we can find δ > 0 such that |Fs(x) − Ft(x)| < 2, ∀x ∈ X,
whenever |s − t| < δ. Choose numbers 0 = t0 < t1 < · · · < tn = 1 such that ti+1 − ti < δ
for each i = 0, . . . , n − 1. Then Ft0 = exp ◦ϕ0, where ϕ0 : X → R is constant at 0. Since
|Ft0(x) − Ft1(x)| < 2 for all x ∈ X, it follows from the above that we can find ϕ1 : X → R
with Ft1 = exp ◦ϕ1. Continuing by induction we obtain ϕ = ϕn : X → R with f = exp ◦ϕ.
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Corollary 1.12 The circle S1 is not contractible.

Proof We show that any self-homeomorphism of S1 must be essential. Thus let α : S1
∼=−→ S1

be any homeomorphism and assume that it is nullhomotopic. Then according to Proposition
1.11 it has a lift α̂ : S1 → R through exp. The map α̂ must be injective, so it follows by
compactness and connectedness that it maps S1 bijectively onto a closed subinterval of R.
Since R is Hausdorff, α̂ must be a homeomorphism onto its image. But this is a contradiction,
since S1 is not homeomorphic to an interval: removing an interior point from an interval
yields a disconnected space.

As we have pointed out, this is not a particularly strong result and we will soon surpass it.
We include it for two reasons. Firstly because its proof has a flavour different from many of
the other proofs we will subsequently give in these notes. We will tend to favour a slight more
abstract and conceptual approach than the very hands-on approach above. The statement
and its proof serve as a reminder that basic techniques can often be very effective.

A second reason that we have chosen to highlight this statement is simply for the fact
that we have not quite yet demonstrated that homotopy theory is actually interesting. Now
we know: not every path-connected space is homotopy equivalent to a point. We did remark
in Corollary 1.6 that path connectedness is necessary for contractibility, and we can consider
Corollary 1.12 to be the first extension of this.

Below we give two more basic applications of our theory to some slightly more interesting
geometric problems. As a warm up we’ll introduce the following.

Definition 6 A space X is said to be locally contractible at x ∈ X if for each neigh-
bourhood U of x there exists a neighbourhood V ⊆ U of x such that the inclusion V ↪→ U
is inessential. The space X is said to be locally contractible if it is locally contractible at
each of its points. �

Competing definitions for local contractibility appear in the literature. Manifolds are locally
contractible, as are CW complexes [2] pg.28. Notice how the definition functions: although
the comb space is contractible, it is not locally contractible (consider the points on {0}× I).
In particular local contractibility is not an invariant of homotopy type.

Example 1.6 For n ≥ 0 let H∂(Dn) be the group of all homeomorphisms φ : Dn
∼=−→

Dn which satisfy φ|Sn−1 = idSn−1 . We give H∂(Dn) the subspace topology inherited from
C(Dn, Dn) with the compact-open topology3, and this makes H∂(Dn) into a topological
group. Each f ∈ H∂(Dn) has a canonical extension over all of Rn by letting it act as the

3For a space X let H(X) ⊆ C(X,X) be the set of all self-homeomorphisms X
∼=−→ X in the compact-

open topology. In general this is not a topological group. If X is locally compact, then composition is
continuous and H(X) becomes a topological monoid under composition. Continuity of inversion, however,
is still problematic. If we assume that X is compact Hausdorff, then we do get a continuous inversion and
H(X) becomes a topological group (note that if f ∈ 〈K,U〉, then f−1 ∈ 〈X \ U,X \ K〉). Also inversion
is continuous in the case that X is locally connected, locally compact Hausdorff, in which case H(X) is a
topological group. In particular H(X) is a topological group if i) X is a finite CW complex, or ii) X is
a topological manifold. A (topological) isotopy of a space X is a homotopy h : X × I → X such that

ht : X
∼=−→ X is a homeomorphism for each t ∈ I. If X is locally compact Hausdorff, then isotopies of X are

exactly paths I → H(X).
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identity outside of Dn. With this in mind we define λ : H∂(Dn) ×H∂(Dn) × I → H∂(Dn)
by putting

λ(f, g; t)(x) =

{
f(x) t = 0

f(tf−1(g(x/t))) t ∈ (0, 1].
(1.28)

Then λ is a continuous map which for all f, g ∈ H∂(D2) satisfies

• λ(f, g; 0) = f

• λ(f, g; 1) = g

• λ(f, f ; t) = f for all t ∈ I.

In particular
F : (f, t) 7→ λ(f, idDn ; t) (1.29)

gives a contraction of H∂(Dn).
Notice, however, that λ does much more than merely contract H∂(Dn): it is a homotopy

pr1 ' pr2 which is fixed on the diagonal. To put this observation to use fix f ∈ HD(Dn) and
let U ⊆ HD(Dn) be an open neighbourhood of f . By the third property listed above we can
use the continuity of λ and the tube lemma to find an open set V ⊆ U containing f such
that λ(V ×{f}× I) ⊆ U . By restriction λ now defines a contraction of V in U , which shows
that H∂(Dn) is locally contractible at f . Of course f was arbitrary and in this paragraph
we have shown the following.

Proposition 1.13 The space H∂(Dn) is both contractible and locally contractible.

There is a lot of geometric intuition behind the definition of α, which can be traced back to
Alexander’s 1923 paper [1]. It is known as Alexander’s trick. �

Example 1.7 The inclusion4

On ↪→ Gln(R) (1.30)

is a homotopy equivalence. We construct the inverse as follows. If A ∈ Gln(R), then ATA is
positive definite and the equation P 2

A = ATA uniquely defines a symmetric, positive definite
matrix PA

5. Note that PA is invertible, so from the fact that PA is symmetric we see that
AP−1A is orthogonal.

Writing Pn for the space of positive definite real n×n matrices (topologised as a subspace
of Mn(R)) consider the assignment

Gln(R)→ On × Pn (1.31)

A 7→ (AP−1A , PA).

4Here, Mn(K) denotes the set of all n×n matrices with entries in a given field K ∈ {R,C}. The subspace
Gln(K) ⊆ Mn(K) denotes the topological group of all n × n matrices with non-vanishing determinant. It
is called the general linear group over K of degree n, and is a non-compact Lie group. i.e. it has the
structure of a smooth manifold and the operations of multiplication and inversion are smooth maps. When
K = R, the subgroup On ⊆ Gln(R) consists of those matrices A satisfying ATA = AAT = I, and is called
the orthogonal group of degree n. It is a compact, closed Lie subgroup of Gln(R), and is precisely the
group of orthogonal transformations of Rn with its Euclidean inner product. For this course you will only
need to understand these objects as groups of matrices.

5A symmetric matrix P ∈Mn(R) is said to be positive definite if vTPv > 0 for all v 6= 0 ∈ Rn.
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Each matrix PA may be computed as a power series, so this map is continuous. Since we
can recover A as A = (AP−1A )PA, this map is in fact a homeomorphism.

Now Pn is ∗-convex around I and thus contractible. This means that the projection
On ×Pn → On is a homotopy equivalence, whose inverse is the inclusion of On at any point
(I ∈ Pn is a canonical basepoint). Composing this projection with (1.31) we get a map
Gln(R) → On, A 7→ AP−1A , which is the homotopy inverse to (1.30). Note that we have
proved more than originally claimed. If A ∈ Gln(R) is orthogonal, then PA = I. Thus the
above map exhibits On as a strong deformation retraction of Gln(R).

Similar considerations give rise to a complex version of the statement: the inclusion of
the unitary group

Un ↪→ Gln(C) (1.32)

is a homotopy equivalence and strong deformation retract. �

Finally we will end these notes by introducing the notion of a ‘homotopy of homotopies’
which we shall need in future. It is slightly subtle, but it will turn out to be important to us
to understand not only when two maps are homotopic, but also the exact manner in which
they are. It is too much to reasonably ask to understand all the possible homotopies between
a pair of maps, but the notion we are about to introduce captures just what we will need.

Definition 7 Let G,H : f ' g be two homotopies of maps X → Y . We say that G is track
homotopic to H, written G ∼ H, if there is a continuous map Ψ : X×I×I → Y satisfying

1. Ψ(x, t, 0) = G(x, t)

2. Ψ(x, t, 1) = H(x, t)

3. Ψ(x, 0, s) = f(x) for all x ∈ X, s ∈ I

4. Ψ(x, 1, s) = g(x) for all x ∈ X, s ∈ I. �

Track homotopy leads to a groupoid structure on the set of continuous maps X → Y , and
is pleasantly well behaved in general. We will not formalise this, but see tom Dieck [3] §2.9
for further details.

Proposition 1.14 If F : f ' g : X → Y is a homotopy, then

f + F ∼ F ∼ F + g and F − F ∼ f. (1.33)

If G : g ' h and H : h ' k are two further homotopies of maps X → Y , then

(F +G) +H ∼ F + (G+H). (1.34)

In the case that there are track homotopies F ∼ F ′ and G ∼ G′, then

F +G ∼ F ′ +G′. (1.35)

The proof of this is straightforwards and omitted. It can be much streamlined by use of the
following lemma.
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Lemma 1.15 Let H be a homotopy of maps X → Y . If ϕ : I → I is a map satisfying
ϕ(0) = 0 and ϕ(1) = 1, then there is a track homotopy H ∼ H(1X × ϕ).

Proof Define ψ : X × I × I → Y by

ψ(x, s, t) = H(x, (1− t)s+ tϕ(s)), x ∈ X, s, t ∈ I. (1.36)

Note that the horizontal composition also works well with track homotopy, and the following
equations hold whenever they make sense.

• (F ? G) ? H = F ? (G ? H) (strictly).

• f ? G ? h = fGh.

• F ? G ∼ F ′ ? G′ whenever F ∼ F ′ and G ∼ G′.

• F ? (G + H) ∼ fG + (F ? H) ∼ (F ? G) + gH, where F : f ' g (this is just the
interchange law 1.4).

• (F + G) ? H ∼ (F ? H) + Gk ∼ Fh + (G ? H), where H : h ' k (this is again the
interchange law).

Example 1.8

1. If V is a vector space, then any two maps f, g : X → V are homotopic. If F,G : f ' g
are homotopies, then F,G are track homotopic

ψs(x, t) = (1− s)F (x, t) + sG(x, t). (1.37)

Note that again this homotopy is canonical. On the other hand, if we replace V with
an affine space A, then the two maps are homotopic, and the two homotopies are track
homotopic, but nothing in this case is canonical.

2. A point of X is a map x0 : ∗ → X from the 1-point space. A path γ : I → X from x0 to
x1 is then a homotopy γ : x0 ' x1. A path homotopy γ ' γ′ is thus the same thing as a
track homotopy. The notions of concatenation of paths and of addition of homotopies
coincide. Attempting to use these observations as definitions would be clumsy, but
would have the benefits of immediately recognising that topological properties like
path connectedness are really homotopy-theoretic concepts. The point of noticing this
connection that it brings some intuition to the associative-up-to-homotopy properties
1.14 that track addition enjoys. �

1.1 Exercises

Maps into Spheres

1. Show that any non-surjective map f : X → Sn is inessential.
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2. Show that if f, g : X → Sn are maps satisfying f(x) 6= −g(x), ∀x ∈ X, then f ' g.
Show that the implication is not reversible by finding an integer n, a space X, and
maps f, g : X → Sn such that f ' g, but f(x) = −g(x), ∀x ∈ X.

3. Show that the unreduced cone on Sn is homeomorphic to the disc Dn+1. Use this
observation to construct two ‘preferred’ null-homotopies of the equatorial inclusion
Sn ↪→ Sn+1. Subsequently use the two preferred null-homotopies to construct four
different self-maps Sn+1 → Sn+1. Show that there are at least two distinct homotopy
classes amongst these four self-maps. You may take for granted that Sn+1 is not
contractible. (There are actually three distinct homotopy classes here. Feel free to
attempt a proof of this fact.)

Constructing Homotopies

1. Let X be a space and let {Yi}i∈I be a family of spaces. Assume given a family of
homotopies F (i) : fi ' gi : X → Yi. By writing the homotopies in adjoint form
F (i) : X → Y I

i , show that the two maps (fi)I , (gi)I : X →
∏
I Yi are homotopic.

2. Suppose given a family of spaces {Xi}i∈I and a family F (i) : fi ' gi : Xi → Y
of homotopies into a space Y . Construct a homotopy between the coproduct maps
(fi)I , (gi)I :

⊔
I Xi → Y .

3. Let f, g : X → Y be a pair of maps between spaces X, Y . Assume X = U ∪ V is
a union of open (closed) subsets U, V ⊆ X and there is given a pair of homotopies
FU : f |U ' g|U : U × I → Y and F V : f |V ' g|V : V × I → Y such that
FU(x, t) = F V (x, t) for all x ∈ U ∩ V and t ∈ I. Then there is a homotopy
F : f ' g : X × I → Y . Prove this in the following two ways; i) by using the
fact that (−)× I preserves pushouts, since I is locally compact, ii) by taking adjoints
of the homotopies FU , F V . Form an objection to these two methods being described
as ‘different’.

Deformation Retracts

1. Assume that A ⊆ D̊n is ∗-convex about the origin. Show that Sn−1 ⊆ Rn \ A is a
deformation retract.

2. Let A ⊆ B ⊆ X. Assume that both A ⊆ B and B ⊆ X are deformation retracts.
Show that A ⊆ X is a deformation retract. Show that A ⊆ X is a strong deformation
retract if both the deformation retracts A ⊆ B and B ⊆ X are strong.

3. Show that the pushout of a strong deformation retract is a strong deformation retract.
Is the statement true if we replace strong deformation retract with deformation retract?
With weak deformation retract?

4. Show that a strict retract of a Hausdorff space X is necessarily closed in X. Use
this to find an example of a weak deformation retraction which is not a deformation
retraction.
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Local Path Connectedness and Local Contractibility

1. A nonempty space X is path connected if for any pair of points x0, x1 ∈ X, there is
a path l : I → X with l(0) = x0 and l(1) = x1. Formulate an equivalant definition
for this in terms of homotopy class of maps ∗ → X and use it to conclude that ‘path
connectedness’ is an invariant of homotopy type.

2. A space X is said to be locally path connected if the path components of each
open subset U ⊆ X are themselves open. Give an example to show that ‘local path
connectedness’ is not an invariant of homotopy type.

3. A space X is said to be locally contractible at x ∈ X if for each neighbourhood

U of x there exists a neighbourhood V ⊆ U of x such that the inclusion V
⊆−→ U is

inessential. X is said to be locally contractible if it is locally contractible at each of
its points. Show that a locally contractible space is locally path connected. Give an
example to show that local contractibility is not an invariant of homotopy type.

Semilocal Contractibility

1. A space X is said to be semilocally contractible if each point x ∈ X has a neigh-
bourhood U ⊆ X whose inclusion into X is inessential. Show that if X is semilocally
contractible, then so too is any homotopy retract of X. Conclude that semilocal con-
tractibility is an invariant of homotopy type.

2. Show that if X is locally contractible and Y ' X, then Y is semilocally contractible.

3. Show that the path components of a semilocally contractible space are open. Conclude
that X is semilocally contractible if and only if its path components are open and are
themselves semilocally contractible.

4. Show that if X is any space, then the unreduced suspension Σ̃X is semilocally con-
tractible. If X is a pointed space, then is the same necessarily true for the reduced
suspension ΣX?6

5. Show that a finite product of semilocally contractible spaces is itself semilocally con-
tractible. Is the same true for an infinite product of semilocally contractible spaces?

6. Let A be semilocally contractible and ϕ : Sn−1 → A a map. Show that the adjunction
space A ∪ϕ en is semilocally contractible.
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